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Abstract

Various classes of algebraic surfaces have been examined as to their suitability for
CAGD purposes. This paper contributes further to the study of a class of quartic
surfaces recently investigated by Degen, having strong potential for use in blending,
and possibly also in free-form surface design. These surfaces are here put in the con-
text of a classification of quartic surfaces originally given more than one hundred
years ago. An algebraic representation is provided for them, and a simple geomet-
ric interpretation given for their rational biquadratic parametric formulation. Their
theory is established from an analytic geometry viewpoint which is more straight-
forward than Degen’s original approach and gives further useful geometric insight
into their properties. A major subclass of Degen’s surfaces consists of projective
transforms of the Dupin cyclides; for this reason (and others, explained in the text)
the name supercyclides is proposed for them.
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1 Introduction

The virtues of using low-degree algebraic surfaces for geometric modelling have been
discussed by several authors (Bajaj, 1993; Dahmen and Thamm-Schaar, 1993; Dutta,
Martin and Pratt, 1993; Sederberg, 1985). However, the question has not yet been
settled as to what is the minimum degree for an algebraic surface which provides the
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most appropriate compromise between geometric flexibility for the modelling of gen-
eral shapes and ease of control for the designer. It has long been recognized that the
general quadrics provide insufficient freedom for free-form design. The cubic surfaces
have been investigated, in particular by Sederberg (Sederberg, 1990a,b), who has sug-
gested a method by which they may be used in the construction of piecewise-defined
free-form shapes. However, this method is not intuitive for the non-mathematical de-
signer, and, as Sederberg points out, there are certain other problems which arise
with cubics, not least unexpected changes in surface topology as defining parameters
are varied. While the general cubic possesses 19 degrees of freedom the general quar-
tic has 342, which poses an even greater problem in finding means for its intuitive
control. For this reason investigation of the quartics for design has been restricted to
special cases, notably the Steiner surfaces (Sederberg and Anderson, 1985) and the
Dupin cyclides (Dutta, Martin and Pratt, 1993). The latter are easy to handle from
the designer’s point of view, and have been found useful for the construction of blend
surfaces (Boehm, 1990; Pratt, 1990, 1995), though (Martin, de Pont and Sharrock,
1986) found that they give insufficient freedom for fully free-form design. The present
paper further investigates a class of quartics identified by Degen (see Degen 1982,
1986, 1994), which proves to contain projective transformations of the Dupin cyclides
and therefore permits greater freedom for modelling than those cyclides themselves.
They have the advantage of naturally permitting shape modelling in terms of quadri-
lateral patches, as preferred in practical CAGD applications. By contrast, most other
approaches to design using algebraic surfaces make use of triangular patches.

Degen’s surfaces are parametrized by a conjugate net of conic curves and have the ad-
ditional property that their tangent planes around any such curve envelope a quadric
cone. His starting point was a paper by (Blutel, 1890), who investigated surfaces gen-
erated by a single family of conics having the tangent cone property. Degen showed
that his surfaces, which he originally called double-Blutel surfaces, are of algebraic
degree no higher than four. They include projective transformations (in general com-
plex) of the cubic and quartic Dupin cyclides, and for this reason in his more recent
papers on the topic he refers to them as generalized cyclides. This is an unfortunate
choice of name since it may lead to confusion with the general cyclides of (Casey,
1871; Darboux, 1896), briefly discussed in Appendix A of this paper. With the excep-
tion of their special cases the Dupin cyclides, these do not possess the double-Blutel
property. The name proposed here for the major subclass of Degen’s surfaces is, by
analogy with the superquadrics of (Barr, 1981), supercyclides. They appear to have
significant potential for use in geometric modelling.

Degen obtained representations of the double-Blutel surfaces by means of a construc-
tive approach, starting from the tangent cone requirement. The primary class of their

2 The implicit equation of a surface of algebraic degree n contains 1(n + 1)(n + 2)(n + 3)
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quartic cases was subsequently characterized by (Barner, 1987) as possessing two pos-
sible generations as envelopes of families of variable quadrics, all sharing a common
nondegenerate conic. This is a generalization of Dupin’s original definition of his cy-
clide as the envelope of a variable sphere moving in constant contact with three other
fixed spheres (see Dupin, 1822), the shared conic being the imaginary circle at infinity,
as will be seen later. The approach taken here is analytic rather than constructive,
and is based on a nineteenth-century study of a class of quartic surfaces. It is shown
that this class includes the major subclass of the double-Blutel surfaces, which are
thus placed in context in the established theory of quartic surfaces. The analysis is
more elementary than that of either Degen or Barner, though by its nature it excludes
consideration of the cubic cases covered by their treatments. A corresponding study
of the other types of double-Blutel surfaces will be made in a future paper.

2 Characterization of the quartic supercyclides

The quartic algebraic surfaces were extensively studied from the point of view of
analytic geometry more than a century ago. This early work contains much of interest;
it has been summarized by various writers, notably (Jessop, 1916) and (Meyer, 1928).
An account is given in Section 2.1 of its most important aspects for present purposes,
and this will serve as the point of departure for new developments in Section 2.2.

2.1 Kummer’s study of quartics with singular conics

The subclass of quartics of present interest is that of surfaces possessing a singular
conic and also containing families of conics, first characterized by Kummer in 1863 as
part of a wider investigation. The following description of those aspects of Kummer’s
work relevant in the present context is based mainly on the concise summary by
(Meyer, 1928), though the material may also be found in a more dispersed form
in (Jessop, 1916). Another related aspect of Kummer’s work is briefly described in
Appendix B.

The general implicit equation for a quartic with a double conic is

¢° — 4p*x = 0, (1)

where ¢ = 0,x = 0 are quadric surfaces and p = 0 is a plane. It is clear that the
singular conic is the curve of intersection of ¢ = 0 with p = 0. We will here take
¢, x and p to be homogeneous functions of the coordinates X, Y, Z, W of the complex



projective space of three dimensions S®. Real surfaces then result on projection from
S3 into the complex vector space V? with coordinates + = X/W,y = Y/W and
z = Z /W, followed by identification of cases for which x,y and z are real coordinates
in its Euclidean subspace E3. In practice it is a simple matter to ensure the generation
of real surfaces for CAGD, as will be shown later.

Quartics possessing a singular conic may also possess up to four isolated singular
points. In the case of two such isolated singularities the quadratic y has two linear
factors, so that the equation of the surface becomes

¢* — 4p*qr = 0, (2)

where the singular points lie on the line of intersection of the planes ¢ = 0,7 = 0.
These planes define a pencil of planes whose axis is their line of intersection. Each
plane of the pencil intersects the quartic in a pair of conics. For the planes ¢ = 0 and
r = 0 the two conics coincide, and these two planes are therefore singular tangent
planes, sometimes referred to in older literature as tropes, tangent to the surface along
an entire conic.

For surfaces possessing four isolated singular points, there exist two pencils of planes
generating families of conic intersections. The equation of the surface® is now

(st — qr — p*)? —dp*qr = (qr — st — p*)* — 4p’st = 0. (3)
Here the two pencils of planes are defined by the pairs of linear expressions (g, r) and

(s,t); each such expression defines a plane tangent to the surface around a conic. For
the surfaces defined by Equation (3) the singular conic is given by

p=0, gr—st=0, (4)

while the pairs of isolated singularities occur at

g=r=0, p*—st =0,
(5)

s=t=0, pP—qr=0.

As will be shown later, the quartic Dupin cyclides belong to the class of surfaces
represented by Equation (3); in their case at most one of the pairs of singular points

3 The more symmetrical form (¢r + st — p?)? — 4¢grst = 0 was not apparently noted by
earlier authors.



is real. If both pairs are complex the ring form of the surface results, while one real
pair gives rise either to the horned or spindle form. Illustrations of all three forms are
given by (Fladt and Baur, 1975) and (Chandru et al., 1989), showing the real points
of self-intersection in the two latter cases.

2.2 Parametrization of quartics with a singular conic and four isolated singularities

A parametrization is now sought for the surfaces defined by Equation (3). It proves
convenient to define a plane of the (¢, r)-pencil in terms of a parameter p by

pq—r=0. (6)

This plane then intersects the quartic in a curve lying on the surface obtained by
substituting r = p?q into Equation (3). The resulting equation factorizes in the form

(st = {pg +p}*) (st — {pg — p}*) = 0, (7)

which represents two quadrics, confirming that the plane p?q — r = 0 intersects the
quartic in a pair of conics, C; and Cj.

A particular point on the quartic will also lie on one of the planes of the (s, t)-pencil,
which will be represented in terms of a second parameter o as

o’s —t=0. (8)

Now the two quadrics of Equation (7) are in fact cones, having their vertices at the
intersections of the planes s,t, and pq + p. Since both vertices lie on the axis of the
(s,t)-pencil, any of its planes must intersect each cone in a pair of lines. Each such
line will also intersect one of the conics C7, Cy; the resulting four intersection points
will lie on the quartic. To find them, we may substitute ¢t = o?s into Equation (7).
The resulting equation factorizes as

(p+pqg+os)p+pg—o0s)p—pqg+0os)(p—pg—os)=0,

and it therefore represents four planes. Each of them intersects 0?s —t = 0 along a
cone generator whose intersection with p?q — r = 0 lies on the quartic. Three of the
four resulting points on this surface may be disregarded; the others may be obtained
by reversing the sign of p and/or o, the effect being that of a simple reparametrization



of the quartic. The point on the surface corresponding to the parameter values p, o
will therefore be taken to lie on the plane

p+pqg+os=0. (9)

Since it also lies on the planes of Equations (6) and (8) we may obtain its coordinates
in terms of p and o by simultaneous solution of this set of three linear equations. If
we use the homogeneous coordinates of S3, defining p = p1 X +poY +p3Z + psW and
so on, then the system may be expressed as

pPq — 1 PPq2 — T2 pPqs — T3 X
0'281 — 1 0'282 — 19 0'283 — t3 Y —
P1+ pqr + 081 P2+ pge + 0S2 p3 + pgs + 0S3 Z

PQ(M — Ty

-w 0%s4 — 4 . (10)

D4+ pqs + 0S4

The solution for the resulting coordinate values in V? is given by Cramer’s Rule as
x = —Dy/Dy, y = —Dy/D, and z = —D3/D,, where D, is the determinant of the
3 x 3 matrix of Equation (10), while Dy, Dy and Dj are the determinants of the same
matrix with its first, second and third columns respectively replaced by the column
vector on the right of the equation. A cursory inspection suggests that the three
coordinates are rational bicubic functions of the parameters p, o, but on expansion
the cubic terms in both parameters are found to cancel. These surfaces therefore have
a rational biquadratic parametrization.

The most convenient way of evaluating the determinant D, is to express it as the sum
of two determinants by splitting the elements in the first row. The new determinants
have in their first rows coefficients of ¢ and r respectively, and the first of them is
multiplied by p?. Further decompositions may then be made by similarly splitting the
elements of the second and third rows. Of the resulting twelve terms four are zero
because their determinants exhibit repeated rows; these happen to be the terms in
which p? and o2 occur. The result of the expansion is

P1 P2 P3 q1 42 q3 q1 42 q3 P1 P2 P3
2 2 2 2 2
Dy(p,0) = |q1 g2 g3 |P70" + |51 59 83| P°0 — |1y o 3| P0° — | @1 q2 q3|P

51 S2 S3 ty ty 13 S1 S2 83 by ta t3



b1 P2 D3 q1 92 g3 Ty T2Ts b1 P2 P3
T T2 T3 o’ + LT T3P~ |81 82 83|0+t |y s (11)

51 8o S3 ty ty t3 t1 ty t3 t1 ta 13

At this stage D, is defined in terms of the four singular tangent planes ¢,r, s and
t, together with the plane p containing the singular conic of the surface. In S® a
maximum of four of these five planes can be linearly independent. In what follows,
q,r,s and t will be taken as a basis; other cases will be dealt with in a later paper.
With this proviso we can express p uniquely as

p=aq+ fr+ys+ 0t (12)

where «, 3,7, § are (possibly complex) scalar constants. On substitution for p in Equa-
tion (11) and decomposition of the determinants as previously it is found that many
of the resulting terms vanish because their determinantal coefficients have repeated
rows. The remaining terms may be collected in the form

Dy(p,0) = (Biy + Boup®)(y + 0 + 60?)

— (Bss + Buo?)(a+ p + Bp?), (13)

where the B;; are cofactors of elements b;;, i,7 € {1,2,3,4}, of the matrix of coeffi-
cients of the basis planes,

q1 92 43 44
Ty T2 T3 Ty
51 82 83 54

ty 1o t3 ty

Turning now to the other determinants involved in the solution of Equation (10), a
similar procedure shows that the equations for D;, Dy and D3 have the same form as
(11). The differences are that the 3 x 3 determinants arising lack those coefficients of
the planes ¢, r,s and ¢t whose suffices are 1, 2 and 3 respectively, their places being
taken by coefficients with suffix 4. The column indices in these three determinants, as
initially given by Cramer’s Rule, thus have the orderings (4,2,3), (1,4,3) and (1,2,4).
The number of column interchanges required to bring their column indices into natural
or ascending order is 2, 1 and 0 respectively, each such interchange reversing the sign



of the determinant. Thus the sign associated with Dy must be reversed on reordering
the columns. Once these changes have been made the determinantal coefficients in
the biquadratic expressions for Dy, Dy and D3 prove to be the remaining cofactors
of the elements of the matrix of Equation (14). The full parametric equation of the
surface, Q(p, o) = [=D1(p, ), —Ds(p, o), —D3(p,c), Di(p,o)]", then takes the form

Q(p,0) = (E+Fp*)(y + 0 +d0%) — (G +Ho®)(a + p + fp°), (15)

where

E = (B, B2, Bis, Buy),

F = (B21, B22; BZS; BZ4)T7
(16)
G = (Bs, Bsy, Bss, Bs)”,

H= (B417 B427 B437 B44)T-
2.8  Significance of the vector coefficients

The determinant |B| of the matrix of Equation (14) can be expressed as Y7, b;; Bij,
fori =1,2,3 or 4. On the other hand, it is known that an expansion in terms of alien
cofactors, for example E?Zl bi;Bij, where k # i, has the value zero since it relates to
a modified determinant having two identical rows. This last fact provides a geometric
interpretation for the vector-valued coefficients in the parametric representation of
the surface. Consider, for example, the alien cofactor expansion

bo1 B11 + bao By + bas Bis 4 bay Biy = 1181y +1r9Big + 13813 +ry By = 0.

Recalling that the r; are the coefficients defining the plane » = 0, we may interpret
By, B3, B3, B4 as the homogeneous coordinates of a point lying in that plane. The
same reasoning shows that this point also lies in the planes s = 0 and ¢t = 0. It has
been assumed that ¢,r,s and ¢ are linearly independent, and hence the intersection
of these three planes in S® represents a unique point in V3.

Since the vector-valued coefficients E,F, G and H in Equation (15) are given by
(Bi1, Bia, Biz, Biy)",1 € {1,2,3,4}, these coefficients therefore represent in V3 the



vertices of the tetrahedron bounded by the four planes ¢, r, s and ¢t. Two edges of this
tetrahedron, the lines of intersection of the pairs of planes (¢,r) and (s,t) (i.e. the
lines through G, H and E, F respectively), play a very important role in the theory
of these surfaces. They are the lines through which pass all the planes of one or other
family of isoparametric conics, and they will be referred to in what follows as the
characteristic lines of the surface. We may consider the surface to be defined either
in terms of its four singular tangent planes, whose intersection points give the vectors
E,F,G and H, or more directly in terms of those points themselves, which, taken
in sets of three, define the planes. The scalar constants «, 3,y and § appearing in
Equation (15) also affect the surface definition, since they determine the plane of its
singular conic. Their influence will be discussed in more detail later in the paper.

The identification of the vector coefficients with specific points in S® permits a
straightforward geometric interpretation of Equation (15). The first factors in each of
the two terms on the right-hand side represent variable points on the lines through
E, F and G, H respectively. The right-hand side as a whole then gives a further point
on the line through these two variable points, since it is merely a linear combination
of them. This final point lies on the surface.

2.4 The boundary cone and tangent cone properties

Several properties of the surfaces represented by Equation (15) make them partic-
ularly suitable for use in CAGD. The most important is the double tangent cone
characteristic originally sought by (Degen, 1986), whose proof that it holds for these
surfaces is reviewed in this section for the sake of completeness.

We already know that the isoparametric curves are conics. Consider the two particular
curves given by o = 0, and 0 = 0y, where oy, 0, are constants. These may be written
as

Q(p,01) = (E+Fp*)(y+ 01+ 607) — (G + Hot)(a + p+ Bp%),

Q(p, 02) = (B + Fp2) (7 + 02 + 602) — (G + Ho2)(a + p + Bp).

Then

(v + 02+ 605)Q(p, 01) — (v + 01 + 607)Q(p, 02) =

(a+p+Bp){(y+ 01+ 80D (G +Hod) — (v + 0y +603) (G + Ho?)}. (17)

The left-hand side of Equation (17) represents a point lying on the line through points



on the two conics having the same value of p. But the right-hand side represents a
point in V3 whose position depends upon the choice of oy, 05 but not upon p, since all
components in S* are multiplied by the same scalar function of p. We conclude that
all lines through corresponding points on the two curves pass through this particular
point, which furthermore lies on the characteristic line defined by G and H, since E
and F are absent from the equation. Thus (as pointed out by Degen) points having
equal parameter values on the two isoparametric curves are in a perspective relation-
ship with respect to a centre lying on one of the characteristic lines. The family of
lines through corresponding points on the two curves are therefore generators of a
quadric cone with vertex on the characteristic line. Symmetry in p and o implies that
the same property holds for pairs of isoparametric curves of constant p. A signifi-
cant consequence of this result is that a supercyclide patch bounded by two pairs of
isoparametric conics has coplanar corners, since the corners taken in adjacent pairs
lie on two generators of the cone, which are coplanar since they meet at the vertex.

Even more importantly, it is evident that in the limit as 0, — 0 the cone becomes a
tangent cone, still having its vertex on the characteristic line. Analytically, on taking
the limit we obtain the result

_’Y+01+50'% 8Q

Q(pa 01) T%Ul %(pa 01) =
2v0y + 0%

BN T Ty 1

@rorsn {200 -ch oy

Here the left-hand side represents a line through the point Q(p, o) in the tangent
direction of the other isoparametric curve through that point. The right-hand side
once again gives a point which in V? is independent of p. We conclude that all
cross-tangents of the curve Q(p, o1) pass through this point. The cross-tangents are
therefore generators of a cone which, since the curve is a conic, must be a quadric
cone. As before, symmetry implies that isoparametric curves of constant p also possess
tangent cones. Thus the surfaces represented by Equation (15) all possess the double
tangent cone property. In the case of the Dupin cyclides the tangent cones are right
circular cones, and it has been shown elsewhere (Boehm, 1990; Pratt, 1990, 1995)
how this property can be used in the construction of blend surfaces. The supercyclides
possess a generalization of that property which should render them still more powerful
for the same purpose.

Possession of the tangent cone property necessarily requires the two families of con-
ics to form a conjugate net on the surface. A necessary and sufficient condition for
conjugacy is that at all points on any curve from either family the tangents to curves
of the other family generate a developable surface (Weatherburn, 1927). Cones being
developable, this property clearly holds for the supercyclides.

10



2.5 Isolated singular points of the supercyclide

The treatment here also follows that of (Degen, 1994). Suppose now that p; is a zero
of a+ p+ Bp?. Equation (15) gives the isoparametric conic for this value of p as

Q(p1,0) = (E+Fp})(y+0+dc?),

representing a fixed point in V3, since all four components of the homogeneous vector
contain as a factor the same scalar function of 0. Thus the zeros of o+ p+ 3p? give two
of the isolated singular points of the surface, through which all isoparametric curves
of 0 = constant pass. They clearly lie on the characteristic line through E and F.
Conversely, the zeros of v + o + do? give the other two isolated singular points, lying
on the characteristic line through G and H. It is evident that the singular points may
be either real or complex.

2.6 Inverse parametrization of the surface

A requirement frequently arising in CAD applications is that of determining the
parameter values associated with a given point x, y, z lying on a surface. It is generally
necessary to use an iterative method, but (de Pont, 1984) showed simple closed form
solutions to exist in the particular case of the quartic Dupin cyclides. His formulae
are quoted in the next section, after the necessary notation has been introduced.
Corresponding results for the cubic Dupin cyclides were recently found by (Srinivas
and Dutta, 1995).

Although no closed inverse parametrization formulae have so far been derived for
the supercyclides, it is easy to see that an exact process for computing parameter
values exists. A specified point on the surface is known to lie on the two planes given
by Equations (6) and (8). The planes ¢, 7, s and ¢t may be assumed either known or
easily determined from E,F,G and H. Then it is only necessary to determine the
values of p? and o2 giving the unique plane from either pencil containing the given
point # ; for each pencil this is a linear problem. With p? and o2 known there are two
possible values for each parameter; the sign ambiguities may be resolved by selecting
the values satisfying Equation (9).

4 If the plane is not unique the point lies on the axis of the pencil; it is then a singular
point whose parameter values may be found as described in the last section.
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2.7 Correlation with the results of Degen

As mentioned earlier, Degen adopted a constructive approach to finding classes of
surfaces having double possession of the Blutel tangent cone property. Although it
was derived by very different means, Equation (78) of (Degen, 1986), representing the
‘normal form’ of the major subclass of double-Blutel surfaces, is precisely equivalent
to Equation (15) of this paper.

The present analysis has therefore provided an alternative means of deriving the
equations of this particular subclass of double-Blutel surfaces, and has placed them
in context in the established theory of quartic surfaces. Additionally, a clear interpre-
tation has emerged of the role of the vector-valued coefficients in Degen’s normal form
— Equation (15) of this paper — as the intersection points of a set of four linearly
independent singular tangent planes of the surface. The approach has also given a
simple implicit representation for the surfaces, expressed in terms of those singular
tangent planes.

In (Degen, 1986, 1994) it is stated that, apart from some special cases, the double-
Blutel surfaces are projective transforms of the Dupin cyclides. We will show in the
ensuing sections that the surfaces defined by Equation (15) are in fact rather more
general than this implies, though they certainly contain the projectively transformed
Dupin cyclides as a major subclass. For this and other reasons noted in Section 1 the
name supercyclides is proposed for them here. The relationship of the supercyclides
to the general cyclides of Casey and Darboux is explained in Appendix A.

Degen’s exceptional cases will be briefly discussed in Section 3.2. They will be ana-
lyzed from the present point of view in a future paper.

To conclude this section its primary result, apparently not discovered by Kummer or
any of his near contemporaries, will be restated for emphasis as follows:

Theorem Given a quartic surface possessing a singular conic and four non-coplanar
wsolated singular points, previously known to bear two families of conic curves,

(1) along any conic from either family the surface is tangent to a quadric cone whose
vertex lies on a line through one of the pairs of singular points, and

(2) the families of conics consequently form a conjugate net.

These surfaces are identical with the major class of Degen’s double-Blutel surfaces,
characterized by having skew characteristic lines.

12



Remark The non-coplanarity of singular points implies that the surface has skew
characteristic lines, which in turn requires the four singular tangent planes to be
linearly independent. The theorem will be generalized in a future paper to cover Degen’s
Temaining cases.

It may be noted that all the properties of these surfaces listed in Degen’s most recent
paper on the subject (Degen, 1994) have emerged from the analysis of this section
with one exception. This concerns the position of the central control point in the
Bézier representation of a supercyclide patch, which proves to be at the common
point of intersection of the four corner tangent planes of the patch. Degen originally
showed this geometrically, by using perspective relationships between sets of control
points. A theorem due to the present author (Pratt, 1995) provides an alternative
algebraic proof.

3 Relation to the Dupin cyclides

The properties of the Dupin cyclides pertinent for CAGD have been described by
several authors, including (Chandru et al., 1989; Dutta et al., 1993) and the present
writer (Pratt, 1990, 1995). (Forsyth, 1912) gives parametric equations for their quartic
forms in standard position and orientation, expressible in homogeneous terms as

X = p(e — acosfcostp) + b? cos b,

Y =bsinf(a — pcosp),
(19)
Z =bsiny(ccos — p),

W =a — ccosfcos,

where 6,1 € [0,27). In these equations values of the four constants a, b, ¢ and u (the
first three being related by a? = b®+¢?) distinguish a particular member of this family
of surfaces. They may all be taken as non-negative with no loss of generality since, as
pointed out by (de Pont, 1984), reversal of the sign of any one of them is equivalent
merely to a reparametrization of the same surface.

It was mentioned earlier that formulae exist for the inverse parametrization of the
quartic Dupin cyclides. (De Pont, 1984) gives the following results corresponding to

13



the equations above:

b b
tanf = 7‘?;, siny = . (20)
ar — cf cr — ap

Here x,y, z are the Euclidean coordinates of a point on the surface.

The trigonometric parametrization given above can be converted into a rational bi-
quadratic one, and rational Bézier and B-spline formulations have been published by
several authors (Boehm, 1990; Pratt, 1990; Zhou and Strasser, 1992).

The quartic Dupin cyclides may also be represented by either of the equivalent implicit
equations (see Forsyth, 1912)

(X2 + Y2+ 22+ {0 — 12 3W?)? —aW?({aX — cuW 2 +0°Y?) =0  (21)

or

(X2 4+ Y2+ 22 — {0+ 12 3W?)? —dW2({cX —auW}? = b*Z%) =0.  (22)

In the projective completion of V3, W = 0 is the plane at infinity, and it is clear that
the intersection of the cyclide with this plane can be represented by

X2 4 Y24+ 722 =W =0,

the imaginary circle at infinity®. This curve is a double curve, since when W = 0
the quadratic factor appears raised to the power two; it is therefore a singular curve
of self-intersection of the surface. The possession of the imaginary circle at infinity
as a double curve characterizes the quartic cases of the general cyclides of Casey and
Darboux (see Appendix A).

Note that if a« = b = ¢ = 0 in the equation for the Dupin cyclide it reduces to the
equation of a (double) sphere of radius p, centred at the origin. The significance of

this will become apparent later.

It is easy to see that the Dupin cyclide is a special case of the class of surfaces
under consideration by comparing Equations (3) with (21) and (22). The two sets

® Any sphere in V3, regarded as a quadric in S3, intersects the plane at infinity in this
imaginary circle (Pedoe, 1988).
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of equations have precisely the same form, and the following identifications may be
made immediately:

g=aX +ibY —cuW, r =aX —ibY — cuW, (23)

s=cX +bZ —auW, t=cX —0bZ —auW, (24)

Note that the two singular tangent planes ¢ and r are complex conjugates for the
Dupin cyclide, though the equation of the surface is real since in its algebraic formu-

lation they occur as the product gr. Their intersection gives a real characteristic line
aX —cpW =0, Y =0.

Substitution of Equations (23) and (24) into Equation (3) reveals that the plane of
the singular curve, which we know to be the plane at infinity, must be represented as

p=b*W. (25)

The factor b? arises because an arbitrary choice of one coefficient in (3) has already
been made in the specification of the other planes. We need a representation of p in
terms of ¢,r, s and ¢, and elimination of X,Y and Z from Equations (23) and (24)
gives

p= i(o{q ) —afs+t}). (26)

Then for the Dupin cyclide the coefficients in Equation (12) become

a=p=c/2u, v=0=—a/2pu. (27)

The elements of the vectors E, F, G and H are given, as we have seen, by the cofactors
of the matrix defined by Equation (14) after substitution of the appropriate coeffi-
cients from Equations (23) and (24). It should be noted that simply solving subsets
of the latter equations to find intersection points of those planes does not generally
give vectors consistently scaled for substitution into Equation (15), and use of the
determinantal method is therefore advisable. After evaluation of E,F, G and H and
substitution of the values of the scalar constants from Equation (27), we find that
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(15) becomes

Q(p, ) =1

iab?

b3

ib*c/u

ib%c
0
—ib?

iab?/u

+

ib

iab?/p

20 Cup+ {1+ p*}).

(2uo — a{l + 0?})

)

(28)

/

Note that the foregoing equation is not valid for u = 0; this case will be examined in
a future paper. For i # 0, expansion gives the following results:

X = ib*{2pu[a(1 + p*)o + cp(1 + %)) — b2 (1 + p*)(1 + 02)},

Y =0*(1 = p){2u0 —a(1 +0”)},

Z = —ib3(1 — o) {2up + c(1 + p*)},

W = 2ib*{ap(l + 0°) + c(1 + p*)o}.

These become identical with Equations (19), apart from a common scalar factor which
may be disregarded, if the following identifications are made:

1+ p?
= —cos b,
2p
20
1+o2 cosy,

Conversely, the parameters p, o are related to Forsyth’s parameters 6, by

p=—cosf+isinf = —e

o

_ l—siny
- costy

i1 2pp2) =sin6, (29)
2
ﬁ — sin . (30)
—ia, (31)
1 /m
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For more general supercyclides, different substitutions may be required to obtain real
forms of the equations; thus there is no virtue in making these particular replace-
ments at an earlier stage in the analysis. On substituting for ¢,r, s, ¢, p and o from
Equations (23), (24),(31) and (32) into Equations (6) and (8) we obtain the planes of
the isoparametric circles of the Dupin cyclide in terms of # and v correctly as

bY cosf — (aX — cuW)sinf = 0,

bZ — (cX — apW)siny = 0.

The application of the theory of Section 2 to the Dupin cyclide has provided a check
on the correctness of the development, and we now examine the relationship between
the Dupin cyclides and the supercyclides.

3.1 Projective transformations of Dupin cyclides

Throughout this section, asterisks will be used to label entities relating to Dupin
cyclides. It has been shown that these surfaces are particular cases of supercyclides,
being expressible in the form of Equation (3). Application of a nonsingular projective
transformation maps the defining planes p*, ¢*, r*, s*, t* onto the corresponding planes
p,q,r,s,t of a transformed surface, which, since we are merely replacing one set of
planes by another in an implicit equation of supercyclide form, will also be a super-
cyclide. The linear independence of ¢*,7*, s* and t* implies that of ¢,r, s and t. The
planes p* and p are given by Equation (26) with and without asterisks respectively,
repeated here for convenience in the transformed case:

p= i@{q o} —afs+1}). (33)

Comparison with Equation (12), which expresses p uniquely in terms of the four
coefficients «, 8,7 and 0, suggests at first sight that the only supercyclides which
are projectively transformed Dupin cyclides are those for which the two consistency
conditions o = 3, v = ¢§ are satisfied. However, given a general supercyclide as defined
by Equation (15) it is in many cases possible, as shown below, to find a parameter
scaling which will bring the relation between five equivalent planes into the form of
Equation (33) above.

Suppose that o # (3, v # §, and that for the moment none of these coefficients is
zero. It is easy to verify that setting

pl=(B/a)p, o' =(6/7)"?0 (34)
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in Equation (15) then leads to the result
1/2
/ / O{/‘)/ ! 112 / ! ! _12
Qo) = Qo) = (5] {® +F0 o i
— (G/ + H’U’2)(Oz, _|_p/ _|_B/p/2)}, (35)

in which the modified vector and scalar coefficients are

E = (8/a)'?E, F' = (a/B)'/?F,
G' = (6/7)/2G, H = (v/§)'/?H, (36)

of = = (@B)?, 7 =8 = (30)",

Equation (35) has the same form as Equation (15), but the coefficients o, 3, ', '
now form two consistent pairs. In V3 the vector coefficients represent the same points
as previously, since they have simply been multiplied by scalars. The surface itself
is not changed in V3 by the occurrence of a scalar factor on the right-hand side of
Equation (35).

The above formulae remain valid when one of the original pairs of coefficients is
consistent; in this case the related scaling multipliers reduce to unity (the ratio of two
consistent zero coefficients should also be taken as unity in this context).

It therefore proves possible, when zero coefficients are absent or occur in a consistent
pair, to convert an inconsistent example into a consistent one. In such a case the
geometry of the original supercyclide is consistent with that of a transformed Dupin
cyclide but the two parametrizations are inconsistent. The discrepancy is remedied
by the parameter scaling given above.

It is instructive to examine the effect of the change of parameter from the algebraic
point of view. The plane of the singular conic, expressed in terms of both the old and
the new sets of coefficients, may be written as

p=aq+pr+vys+ot=aqd +pr ++'s+5=9p.

Substitution of the new coefficients from Equations (36) then shows that

q = (a/B)?q, 1" =(B/a)'?r, (37)
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s'=(7/8)'%s, # = (6/7)'"t. (38)

More generally, we could set p’ equal to some scalar multiple of p, but this proves
merely to multiply the implicit equation of the surface through by a constant. It is
a simple matter to check that Equation (3) is unaffected when the original planes
are replaced by their primed or scaled versions. Hence, by appropriately scaling the
linear functions defining the basis planes with respect to each other an inconsistent
case of the type under consideration may be converted into a consistent formulation
of the same surface. The overall geometry of the configuration of singular tangent
planes, the singular conic and hence the surface itself are unchanged in V3; only the
parametrization is modified.

However, if one or both of the inconsistent coefficient pairs contains a zero coefficient
this transformation is no longer possible, since the relevant scaling factors become
either zero or infinite. It is well known that more general rational linear parameter
transformations preserve the degree of rational functions, but their only forms which
also preserve the canonical form of Equation (15) are found to be parameter scalings
of the type used above and inverse relationships of the form p' = k/p, where k is a
constant. The effect of the latter is simply to reverse the roles of the related pairs
of scalar or vector coefficients in each of the bracketed factors in Equation (15). It
appears, then, that there is no way of converting a case of this type into a consis-
tent one. The supercyclides may therefore be categorized into three major classes, as
follows:

1) Regular cases: These arise when the consistency conditions &« = 8 and v = §
are satisfied. Then, as we saw above, the supercyclide can be obtained directly by
applying a nonsingular projective transformation to a Dupin cyclide with appro-
priately chosen (but non-unique) values of a,c and p. Three subcases are worth
mentioning:

(a) a = =0, v =0 # 0. Equation (33) shows that the first condition is
equivalent to ¢ = 0, in which case the original Dupin cyclide is a torus having
the z-axis as its axis of symmetry.

(b) a =p#0, v=0=0. The original cyclide now has a = 0 but ¢ # 0, giving a
torus having the y-axis as its axis of symmetry.

(¢c) « =3 =+ =48 = 0. For this case the singular tangent plane is a null plane.
On setting p = 0 in Equation (3) we obtain

(qr - St)2 = 07

which is clearly the equation of a quadric, doubly generated. This is consistent
with the fact that when a = b = ¢ =0 and p # 0 the Dupin cyclide becomes a
double sphere, it being well known that projective transformation of a sphere
gives rise to a quadric.
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2) Semi-regular cases: One or both consistency conditions is violated; two of the
coefficients may be zero provided they form a consistent pair.

The method for converting a semi-regular case into a regular one by means of a
parameter scaling was given above.

3) Irregular cases: One or both of the consistency conditions is violated; one or
both inconsistent pairs contains a zero coefficient.

These are the cases which cannot be generated by projective transformation of a
Dupin cyclide. Here again, there are three subcases worthy of note (in each of them
a typical example is given, the results of three further possibilities being analogous):
(a) One nonzero coefficient; assume this to be «. The singular curve is given by

Equations (4). In this case its plane is p = ag = 0, and the curve is therefore
the intersection of ¢ = 0 with the quadric gr — st = 0. Then it also lies on
the surface st = 0, a pair of planes whose intersection with ¢ = 0 is a pair of
coplanar lines. Since the planes ¢, r, s,t are assumed to be linearly independent
these lines are non-coincident; they intersect at the common point of ¢, s and
t, i.e. at the point represented by the vector F.

(b) Two nonzero coefficients. We have already dealt with the cases where o = =0
and 7 = 6 = 0. The remaining possibility is that one coefficient from each pair
is zero. We will take § = 6 = 0. Then the plane of the singular curve is
p = aq + vs = 0; substitution for s from this equation into ¢gr — st = 0 shows
that their intersection lies on the surface g(ar +~t) = 0, a pair of planes. Then
once again the singular conic is a pair of coplanar non-coincident lines, the
intersections of ag+vs = 0 with ¢ = 0 and with ar +~t = 0. The first of these
is in fact the line of intersection of ¢ = 0 and s = 0, which passes through the
points F and H.

(c) Three nonzero coefficients. Assume that 6 = 0; then the plane of the singular
curve is aq + Or + vs = 0. In this case it appears that the singular conic is
irreducible.

An analysis of the relationship between the isolated singular points and the singular
conic of the irregular supercyclides reveals why these cases are inherently distinct.
There are three possible subtypes, in which respectively three, two and one of the
coefficients «, 3,7,6 are nonzero. Where two are zero they must be one each from
(o, B) and from (v, d), otherwise the surface is regular or semi-regular, as mentioned
above. It is easy to show from Equations (4) and (5) that the three subcases have
respectively one, two and three singular points lying on the singular conic. In the
case of two, these are one from each pair®. By contrast, the Dupin cyclide can have
zero or two singular points lying on its singular conic; if two, they must belong to the
same pair. Thus the incidence characteristics of the corresponding configurations are
different for the Dupin cyclide and the irregular supercyclide, showing that the latter

6 Recall that the isolated singular points lie two on each of the characteristic lines of a
supercyclide.

20



may not be derived from the former by application of a projective transformation.

In all three of the cases described in this section it is possible for the singular curve to
belong to one of the families of isoparametric conics. This requires that its plane p be-
longs to one of the pencils defined by (g, r) or (s,t). The two cases require respectively
that in Equation (12) v = § = 0 or &« = § = 0. The planes of the isoparametric curves
are given by Equations (6) and (8), and they yield the parameter value associated
with the singular curve as p = (—a/B)"/? or ¢ = (—7/6)'/?, depending on which pair
of coefficients is nonzero.

A final point is that the distinction between regular and semi-regular cases is some-
what arbitrary. The ‘canonical’ parametrization expressed by Equation (15) results
from the representations chosen earlier for the planes of the isoparametric conics.
These are given in terms of p and o respectively by Equations (6) and (8); a different
choice would have resulted in a different canonical parametrization. Since the defini-
tion of semi-regularity depends on this choice it is clear that the only fundamental
distinction is that between regular and irregular supercyclides.

3.2 Degen’s special cases

The supercyclides studied in this paper satisfy Equation (15), and belong to the ma-
jor subclass of quartic double-Blutel surfaces with skew characteristic lines. (Degen,
1986) mentions three forms having different parametric representations. Firstly, he
defines a class of ‘special’ surfaces, whose characteristic lines intersect. In the case of
transformed Dupin cyclides, these prove to correspond to the case of ;1 = 0, for which
Equation (28) was earlier noted to be invalid. Secondly, there are what Degen refers
to as ‘singly degenerate’ forms, having a character in some sense midway between
the quartic and cubic cases. Finally, there are ‘doubly degenerate’ surfaces, which
Degen shows to be algebraically cubic. A full analysis of these additional forms of
double-Blutel surfaces is nearing completion, and will form the subject of a future

paper.

4 Examples of supercyclides

Two simple examples of supercyclides are illustrated in this section. Both are regular
cases, obtainable by transformation of a Dupin cyclide. In the first case, shown in
Figure 1, the transformation is a real inhomogeneous scaling, resulting in a surface
whose isoparametric curves are ellipses; such a surface may be termed an ellipside.
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Fig. 1. An ellipside.

The second example, shown in Figure 2, is the surface generated by revolving the
hyperbola 22 — 222 — 22 = 1 about the z-axis. This is not one of the axes of symmetry
of the hyperbola, and a double curve therefore arises, as the intersection of the sheets
swept out by its two branches. Only one sheet of the supercyclide is depicted in the
figure. It is easy to show that the surface is algebraically quartic, and that its double
curve is the unit circle. Although it is a real surface, this supercyclide results from
the application of a complex transformation to a Dupin cyclide — details are given in
(Pratt, 1996). The complex transformation has the effect of mapping the double conic

Fig. 2. A supercyclide of rotation.
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of the Dupin cyclide, the circle at infinity, onto the unit circle. No real transformation
can achieve this effect.

5 Discussion and conclusions

In this paper further light has been thrown on certain quartic cases of the double-
Blutel surfaces investigated by Degen. In particular their place in the general classi-
fication of quartics has been identified and a comparatively straightforward method
developed for the study of their properties. An implicit equation for them has been
given, expressed in terms of their four singular tangent planes, and a geometric in-
terpretation has been given of their parametric form. Additionally, their relation to
the Dupin cyclides has been analyzed in some detail.

Although the analysis given has covered both real and complex forms of supercyclides
it is easy to ensure the generation of real surfaces for practical applications. It is likely
that implementations can most easily be made in terms of Bézier or B-spline formu-
lations. Then, for example, specification of four real boundary curves satisfying the
necessary conditions for a supercyclide patch will imply that all eight of its peripheral
Bézier control points are real. The property mentioned at the end of Section 2.7 also
gives a real position for the remaining central control point, and the patch as a whole
will therefore be real.

It is already established that the Dupin cyclide is useful as a blending surface because
of its tangent cone property. This allows the G' matching of two cyclide patches across
a common boundary by ensuring that both are tangent to the same cone there (Pratt,
1990). For the Dupin cyclide the cone is a right circular cone, but the corresponding
property for the supercyclides involves a general quadric cone. This fact, together
with their much increased geometric freedom, shows that they have even greater
potential as flexible blending surfaces in CAGD. It is also possible that they will
provide sufficient geometric freedom for use in fully free-form surface design. In this
context they have the advantage of naturally giving rise to four-sided patches, as used
in existing practical CAD systems, rather than three-sided patches as generated by
most other approaches to algebraic surface modelling. The existence of exact solutions
to the inverse parametrization problem, as mentioned in Section 2.6, is an added
advantage for the CAD use of supercyclides.

These surfaces have the further property that patches bounded by isoparametric
curves on them have coplanar corners (see Section 2.4). This makes it almost trivial
to generate approximate representations to any desired accuracy in terms of planar
quadrilateral facets. Such a characteristic is useful for many purposes, including the
efficient generation of graphical renderings. It also has potential as the basis of a
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subdivision method for computing intersections between supercyclide surfaces.

Apart from the Dupin cyclides, only one other class of quartic surfaces has been
examined for its potential use in CAGD, that of the Steiner surfaces (Sederberg and
Anderson, 1985). These are characterized by the possession of three double lines which
meet in a point (Jessop, 1916), and are therefore quite distinct from the supercylides.

Much work remains to be done in the study of supercyclides. On the theoretical side
the remaining quartic cases of Degen’s double-Blutel surfaces need further exami-
nation, as do the cubic cases. More importantly, algorithms for constructing blends
and free-form surfaces from supercyclides need to be established. Some preliminary
work in the blending area is reported in (Degen 1994), and an alternative approach is
suggested in (Allen and Dutta, 1997). The present author is preparing a companion
paper to this one, in which the remaining forms of supercyclides are analysed, and
intends to follow this with application-related studies along the lines indicated.
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A Appendix: The general cyclides of Casey and Darboux

The general cyclide in the sense of Casey and Darboux is the most general quartic
surface having the circle at infinity as a singular curve. The simplest form of its
implicit equation (Darboux, 1896; Jessop, 1916) is that of Equation (1) with

dp=X>+Y*4+72°=0, p=W,

and

X = 061X2 + 042Y2 + OégZZ + 251XW + QBQYW + 2B32W + ’}/W2 =0. (Al)
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The Dupin cyclide is yet a further specialization, in which the coefficients occurring
in Equation (A.1) are expressed in terms of the three defining parameters a, c and
introduced in Section 3 as follows:

ap = (a® +c+p2)/2, B = —acp,

ay = (a? — 2 + pu?)/2, By =0,

Q3 = (C2 - Cl2 + MQ)/Qa 63 = 07

v = (2a%c® + 2% p® + 2p%a® — at — ¢t — pt) /4.

This is easily verified by expansion of Equation (21) or (22).

The general cyclide may possess any number of isolated singularities from zero to four.
If it has four, it is a Dupin cyclide (Jessop, 1916). Since the supercyclides always have
four isolated singularities (see Section 2.2) it is therefore clear that all other forms
of general cyclide are excluded from this class. For that reason they are not further
discussed here, though they have many interesting properties and may well merit
investigation in their own right for potential use in CAGD.

B Appendix: Kummer’s cones

A brief note on this topic is added for the sake of completeness. For any quartic
surface having a singular conic there may be constructed a certain quintic polynomial
equation, each of whose roots in general gives rise to a quadric cone having two curves
of tangency with the quartic (Jessop, 1916). Such cones are known as Kummer’s cones
after their discoverer. They are not the same as the tangent cones discussed in this
paper, of which infinitely many exist for any supercyclide. However, there is some
connection. For a supercyclide it is found that four of the roots of Kummer’s quintic
occur as repeated pairs. In these cases, instead of one cone per root we obtain a pair
of planes per repeated root, so that only the fifth root actually gives rise to a cone.

The tangent planes to a Kummer cone all cut the quartic in pairs of conics. In the
case of repeated roots, each pair of planes defines a pencil, any member of which
cuts the quartic in a pair of conics. For the supercyclides these pencils of planes are
identical with those used earlier to parametrize the surface.
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The torus may be used as an illustration. The axes of the two pencils of planes (the
characteristic lines of the surface) are the axis of symmetry of the torus and a line
at infinity, the second pencil consisting of parallel planes perpendicular to the first
axis. The single Kummer cone is a right circular cone with vertex at the centre of the
torus; it is clearly tangent to the latter around two circles. Every tangent plane of this
cone cuts the torus in a pair of intersecting circles, the so-called Villarceau circles.
Thus, in addition to the two systems of circles generated by the pencils of planes
there exist two further families. The Dupin cyclides may be obtained from a torus by
inversion in a sphere, and since circles invert to circles, there are two corresponding
additional families of circles lying on a Dupin cyclide. The surfaces discussed earlier
in the paper as being projective transformations of Dupin cyclides therefore contain
two further families of conics beyond the isoparametric curves of the given parametric
representation. These do not possess the Blutel tangent cone property, however.
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